Abstract

The reinforcing nanostructures can be made up of nanoparticles, nanosheets or nanofibres such as carbon nanotubes (CNTs) and graphene nanosheets. To investigate the reinforce mechanism, the changes in mechanical behavior of CNT reinforced Polyurethane (PU) matrix with various chirality was studied using molecular dynamics (MD) method in current work. We used the DREIDING and Tersoff force-fields for simulation of the PU and CNT samples, respectively. To report the mechanical properties of pristine PU matrix and reinforced PU/CNT structure, some physical parameters such as interaction energy between polymer chains and nanotube atoms, ultimate strength, and Young’s modulus are calculated. MD outputs indicated inserting CNT with zigzag edge into pristine matrix enlarged the Young’s modulus by 17.10% and the ultimate strength by 25.69%. These results indicated the promising effect of CNT-based nanostructures on the mechanical properties of PU matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.