Abstract

The influence of a silicon carbide whisker reinforcement on room temperature mechanical properties of a monolithic zircon ceramic and zircon composites uniaxially reinforced with silicon carbide monofilaments was studied in a flexure mode. The strength of a monolithic zircon was increased by the addition of whisker reinforcement, but the composite failure was still brittle in nature. In contrast, zircon composites reinforced with SiC whiskers and filaments showed toughened composite-like behaviour and produced higher first matrix cracking strength and toughness than the composites reinforced with only SiC filaments. In addition, the whisker reinforcement had insignificant influence on the ultimate strength of filament-reinforced composites. These results were related to changes in measured fibre-matrix interfacial properties, which indicated that composites with high first matrix cracking strength and toughness can be designed and fabricated via independently tailoring the matrix and the fibre-matrix interfacial properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.