Abstract

In this work, we combined fully atomistic molecular dynamics and finite elements simulations with mechanical testings to investigate the mechanical behavior of atomic and 3D-printed models of pentadiamond. Pentadiamond is a recently proposed new carbon allotrope, which is composed of a covalent network of pentagonal rings. Our results showed that the stress–strain (SS) behavior is almost scale-independent. The SS curves of the 3D-printed structures exhibit three characteristic regions. For low-strain values, this first region presents a non-linear behavior close to zero, followed by a well-defined linear behavior. The second regime is a quasi-plastic one and the third one is densification followed by structural failures (fracture). Young’s modulus values decrease from 520 to 486 MPa. The deformation mechanism is bending-dominated and different from the layer-by-layer deformation mechanism observed for other 3D-printed structures. They exhibit good energy absorption capabilities (3.5 MJ kg−1), with some structures even outperforming epoxy Kevlar and TRIP-steel. The structures show better absorption potential than the well-known porous architectures such as honeycomb, schwarzites, and tubulanes and occupy the same region of woven structures in the Ashby chart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.