Abstract
Isolated enamel defects are commonly seen in first permanent molar teeth but there has been little work on the physical and morphological composition of affected molars. The aim of this study was to determine the mechanical and morphological properties of hypomineralised first permanent molar teeth, utilising the Ultra-Micro-Indentation System (UMIS) and scanning electron microscope, respectively. Further investigations using Energy Dispersive X-ray Spectrometery (EDS), Back Scatter Electron (BSE) Imaging, and X-ray diffraction were employed to attempt to determine the chemical composition, mineral content and crystalline structure of the hypomineralised tissue, respectively, of eight first permanent molars with severe enamel hypomineralisation. The hardness and modulus of elasticity were found to be statistically significantly lower (0.53±0.31 and 14.49±7.56 GPa, respectively) than normal enamel (3.66±0.75 and 75.57±9.98 GPa, respectively). Although the fractured surface of the hypomineralised enamel was significantly more disorganised and the relative mineral content was reduced by approximately 5% in comparison to sound enamel, the mineral phase and Ca/P ratio was similar in hypomineralised and sound enamel. The dramatic reduction in the mechanical properties of first permanent molar teeth has ramifications when clinicians are choosing restorative materials to restore the defects. The reason for the dramatic reduction in mechanical properties of hypomineralised first permanent molar teeth is at present unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.