Abstract

Joining of similar and dissimilar combinations of aluminium alloys 2024 and 6061 were performed using friction welding technique. Microstructure, hardness and tensile properties of the joints were characterized. Microstructure of the alloy were found to change significantly across the joint such as fully deformed, partially deformed and undeformed regions due to deformation, frictional heat and alloy characteristics. Extensive fine grain size was observed in the fully deformed region and volume fraction of finer grains was higher in the alloy 2024 as compared to alloy 6061. Hardness was lower in the weld interface region of the similar joints of AA2024 and AA6061. The lower hardness in the dissimilar metal joint was observed in the heat affected zone of alloy 6061. The tensile strengths of the similar joints were 80 and 85% of respective base metal of alloys 2024 and 6061. The strength of the dissimilar metal joint was observed to be similar to the base metal strength of 6061 alloy. Tensile fracture occurred in the region of joints where lower hardness was observed. The maximum elongation were obtained in dissimilar joints of alloys and characterized by scanning electron microscope. It revealed deep dimple patterns unlike what was observed in similar joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.