Abstract

High-entropy carbides ceramics (HECCs) have attracted extensive attention for their broad application prospects in harsh environments, due to the excellent properties. In this work, the (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C HECCs were prepared using spark plasma sintering at 1800 °C. Then, mechanical properties of HECCs were tested by nanoindentation and scratch tests under different loading conditions. Finally, the mechanical properties and deformation mechanisms were discussed in detail. The density of sintered HECCs reached 8.98 g/cm3, with a relative density of 95.63%. The HECCs demonstrated a single-phase with rocksalt microstructures. The elastic modulus of HECCs was almost a constant under different strain rates, while the hardness obviously increased as the indentation strain rate increasing. In addition, a simple fitted formula was developed to establish the function of hardness and strain rate. Under a relative low scratch load, the HECCs exhibited complete elastic–plastic deformation, and the material removal mechanism was plastic deformation. With increasing scratch load, the material removal mechanism of HECCs transformed into the combined action of plastic deformation and brittle fracture. Furthermore, the deformation mechanisms of HECCs were also influenced by the scratch velocity. At a higher scratch velocity, more local fractures at the micro-scale occurred, and the numbers and sizes of chips and debris also increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.