Abstract

PP/POSS and PP/SiO2 composite non-woven fabrics filled with polyhedral oligomeric silsesquioxanes (POSS) and SiO2 respectively using a convenient blending method were prepared through melt-blown process with corona charging. The morphology of the composite fibers and the distribution of POSS and SiO2 nanoparticles in PP matrix were investigated by field-emission scanning electron microscope (FSEM) and transmission electron microscope (TEM), respectively. POSS and SiO2 can act as nucleating agent and accelerate the crystallization process during nonisothermal cooling. The shear storage modulus G′, loss modulus G″, and complex viscosity η* of non-woven fabric reduce when 1 wt % POSS was added and increase for PP5/POSS composite non-woven fabric compared with pure PP non-woven fabrics. However, all G′, G″ and η* of PP/SiO2 non-woven fabric decrease with increasing SiO2 content owing to plasticization by SiO2. Both stress and elongation at break of the PP/POSS melt-blown non-woven fabrics are improved compared with PP non-woven fabrics, however decrease when SiO2 was added, as compared to the neat PP non-woven fabric. The onset temperature of decomposition for both the PP/POSS and PP/SiO2 composite non-woven fabrics is higher (5–10 °C) than pure PP and char content is increased with increasing POSS and SiO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.