Abstract

• PDA/CB composite non-woven PP fabric was prepared for solar energy harvesting. • Hierarchical structure and synergetic effects of CB/PDA contributed to high light absorbance. • The evaporation rate of 1.68 kg m -2 h −1 with a solar steam efficiency of 91.5% was achieved. • The solar evaporator demonstrated superior salt resistance and ability to purify seawater and various wastewaters with high efficiency. The utilization of solar energy for steam generation is a highly efficient and sustainable technology for seawater desalination to solve the long-standing water crisis. Carbon-based materials have shown promising thermal-heat conversion efficiency due to their broadband solar absorption. Herein, carbon black (CB) was combined with polydopamine (PDA) to develop a high-performance, low-cost, and scalable PDA/CB@PP composite non-woven fabric was fabricated by dip-coating of CB and in situ polymerization of PDA. The hierarchical structure constructed on the fiber surface and the synergetic effects of CB and PDA contributed to the high light absorbance (>95%), superhydrophilicity, and high energy conversion efficiency. The one-way fluidic PDA/CB@PP photothermal based solar steam evaporator demonstrated a high evaporation rate of 1.68 kg m -2 h −1 with a solar steam efficiency of 91.5%. Moreover, the PDA/CB@PP fabric shows remarkable salt resistance when purifying seawater because of the water channel preserved by the hydrophilic porous structure of the fabric which could provide sustained water supply. Besides, the PDA/CB@PP fabric possesses excellent purification capability to wastewaters contaminated by heavy-metal and chemical dyes. This study provides insights into the design and development of low-cost, scalable, highly stable, and efficient solar steam generators for seawater desalination and wastewater purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.