Abstract

Due to the swift progress in the construction sector, there is a global concern about the potential scarcity of river sand and freshwater resources. The development of new construction materials is considered an inevitable trend for industry growth. PVA fibers, known for their strong corrosion resistance, cost-effectiveness, and high toughness, have the potential to enhance the corrosion resistance and seismic performance of structures in marine environments. However, their mechanical properties and durability in the seawater and sea sand environment are not well understood. Therefore, the investigation of the impact of seawater and sea sand on the mechanical properties and durability of PVA fiber-reinforced cement composites is considered crucial. A mechanical performance analysis of PVA fiber-reinforced seawater and sea sand fiber cement composites was conducted in this study. PVA fiber volume fractions of 0%, 0.75%, and 1.5%, cement composite matrix strength grades of C30 and C50, and curing periods of 28 days, 90 days, and 180 days were examined, investigating their influence on the bending toughness of PVA fiber-reinforced seawater and sea sand cement composites. Specific conclusions include the addition of fibers increased the peak bending load, had a less corrosive effect in seawater, and improved the flexural toughness of the material. The most significant improvement was observed at 1.5% fiber content, where the load-deflection curve was fuller and the energy absorption capacity of the material increased by 33–109%, maintaining good bending toughness. Furthermore, higher fiber contents are required for high-strength cementitious composites to improve flexural toughness and durability. The formulation of calculation formulas for predicting bending strength and corresponding deflection, which fit well with the experimental results; and the development of a calculation model for the bending toughness index of PVA fiber-reinforced seawater and sea sand cement composites, providing an effective prediction of material bending toughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.