Abstract
Plymetal is a new type of composite metallic structure based on the concept of plywood created by laser direct metal deposition additive manufacturing technology. Two different metal powders, 316L stainless steel and H13 tool steel, are deposited in alternative parallel rows in each layer in the defined orientations to create a plymetal structure. In this research, the plymetal was manufactured by the POM DMD 505 machine, in which a laser beam melts various metal powders deposited through a coaxial nozzle in a layer-by-layer manner to form a metallic structure. The ballistic performance of plymetal structures was then experimentally studied for high impact applications. Ballistic tests were carried out using a high-pressure gas gun. The plymetal plates of 3-mm-thick were subjected to impact of projectiles at various velocities and the results were compared with test results of stainless steel plates of different thicknesses. Results show that the ballistic resistance of the direct metal deposition generated plymetal structure is better than the ballistic resistance of the stainless steel 316L with the same thickness. Vickers hardness and face deformation characteristics of the plymetal samples and stainless steel samples were also investigated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have