Abstract

This study suggests a simple, convenient and non-destructive method for investigation of the Young\'s modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young\'s modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young\'s modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young\'s modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young\'s modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young\'s modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young\'s modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.