Abstract

The system-level packaging of the IBM z13™ supports the implementation of a new drawer-based Central Processor Complex (CPC). Departing from previous IBM z Systems™ designs, the introduction of distributed land-grid-array (LGA) attached single-chip modules (SCMs) required new mechanical, power, and cooling designs to address specified performance requirements and to provide enhanced reliability, availability, and serviceability (RAS) attributes. Building upon the designs created for the IBM zEnterprise® BC12 (zBC12), new CPC drawer and frame mechanical designs were created to significantly increase overall packaging density. Similar to its predecessor, the IBM zEnterprise EC12 (zEC12), the z13 utilizes water-cooling of the processors, but in contrast to the single input and return flow used to cool the multi-chip module (MCM) in the zEC12, the z13 accomplishes its processor cooling using a flexible hose internal manifold design that provides parallel input and return fluid flow to each SCM. The use of flexible hose also enabled SCM field replacement, new to high-end IBM z Systems. A new internal cooling loop unit and an updated external (building-chilled) modular water-conditioning unit were designed utilizing customized water delivery manifold systems to feed the common CPC drawer design. Revised power delivery and service control structures were also created to address the distributed nature of the z13 system design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call