Abstract
The research described in this paper investigates the seismic behaviour of lightly reinforced concrete (RC) bearing sandwich panels, heavily conditioned by shear deformation. A numerical model has been prepared, within an open source finite element (FE) platform, to simulate the experimental response of this emerging structural system, whose squat-type geometry affects performance and failure mode. Calibration of this equivalent mechanical model, consisting of a group of regularly spaced vertical elements in combination with a layer of nonlinear springs, which represent the cyclic behaviour of concrete and steel, has been conducted by means of a series of pseudo-static cyclic tests performed on single full-scale prototypes with or without openings. Both cantilevered and fixed-end shear walls have been analyzed. After validation, this numerical procedure, including cyclic-related mechanisms, such as buckling and subsequent slippage of reinforcing re-bars, as well as concrete crushing at the base of the wall, has been used to assess the capacity of two- and three-dimensional low- to mid-rise box-type buildings and, hence, to estimate their strength reduction factors, on the basis of conventional pushover analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.