Abstract

Electromagnetic (EM) fields at radio frequencies (RF) cannot penetrate deep into media with high conductivity such as sea water, wet soil, etc. However, moving to the ultralow frequency (ULF) range (300 Hz–3 kHz) allows a considerable range of communication due to the decreased medium loss at low frequencies and a possibility to use the penetrating near field. Magnetically coupled coils are commonly used for near-field magneto-inductive (MI) communication. Alternatively, it is possible to create ULF magnetic fields of sufficient amplitude by rotating permanent magnets. In this work, a ULF magnetic field generator has been created using a rotating permanent magnet. It has been shown that the proposed field generator outperforms a conventional coil source (23 dB of field strength for the same volume and dissipated power that is 0.35 W), which can be a considerable advantage for low size, weight, and power applications. A method to produce amplitude shift keying (ASK) modulation signals using a modulation coil was proposed and analyzed. It was demonstrated that the inductance of the modulation coil is not critical for achieving acceptable modulation ratios, which opens a possibility for a compact ASK generator design. A simple circuit model and analytical formula for modulation efficiency of the generator were proposed and validated by measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.