Abstract

The interaction mechanism of U(VI) on pyrrhotite was demonstrated by batch, spectroscopic and modeling techniques. Pyrite was selected as control group in this study. The removal of U(VI) on pyrite and pyrrhotite significantly decreased with increasing ionic strength from 0.001 to 0.1mol/L at pH 2.0–6.0, whereas the no effect of ionic strength was observed at pH >6.0. The maximum removal capacity of U(VI) on pyrite and pyrrhotite calculated from Langmuir model was 10.20 and 21.34mgg−1 at pH 4.0 and 333K, respectively. The XPS analysis indicated the U(VI) was primarily adsorbed on pyrrhotite and pyrite and then approximately 15.5 and 9.8% of U(VI) were reduced to U(IV) by pyrrhotite and pyrite after 20 days, respectively. Based on the XANES analysis, the adsorption edge of uranium-containing pyrrhotite located between UIVO2(s) and UVIO22+ spectra. The EXAFS analysis demonstrated the inner-sphere surface complexation of U(VI) on pyrrhotite due to the occurrence of U-S shell, whereas the U-U shell revealed the reductive co-precipitates of U(VI) on pyrrhotite/pyrite with increasing reaction times. The surface complexation modeling showed that outer- and inner-surface complexation dominated the U(VI) removal at pH<4 and pH>5.0, respectively. The findings presented herein play a crucial role in the removal of radionuclides on iron sulfide in environmental cleanup applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.