Abstract

Abstract The contamination of Ni(II) on the apple orchards soil is more serious nowadays. The uptake of Ni(II) from aqueous solutions on graphene oxide (GO) was investigated by batch, XPS and modeling techniques. The batch experiments indicated that the uptake of Ni(II) on GO increased significantly with increasing pH from 2.0 to 6.0, and the high-level uptake of Ni(II) was observed at pH > 6.0. No effect of ionic strength on Ni(II) uptake indicated inner-sphere surface complexation dominated the uptake of Ni(II) on GO. The maximum uptake capacity of GO for Ni(II) calculated from Langmuir model was calculated to be 81.97 mg/g at pH 5.0 and 293 K. The results of XPS spectra indicated that a variety of oxygen-containing functional groups were responsible for the uptake of Ni(II) on GO. The uptake process of Ni(II) on GO can be satisfactorily fitted by surface complexation modeling using diffuse layer model with two inner-surface complexes. These findings are crucial for the potential application of graphene oxide in the uptake of heavy metals in environmental cleanup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.