Abstract

In this study we sought to gain insights of the structural and mechanical heterogeneity of dentin at different length scales. We compared four distinct demineralization protocols with respect to their ability to expose the periodic pattern of dentin collagen. Additionally, we analyzed the phase contrast resulting from AFM images obtained in tapping mode to interrogate the viscoelastic behavior and surface adhesion properties of peritubular and intertubular dentin, and partially demineralized dentin collagen fibrils, particularly with respect to their gap and overlap regions. Results demonstrated that all demineralization protocols exposed the gap and overlap zones of dentin collagen fibrils. Phase contrast analyses suggested that the intertubular dentin, where the organic matrix is concentrated, generated a higher phase contrast due a higher contribution of energy dissipation (damping) than the highly mineralized peritubular region. At increasing amplitudes, viscoelasticity appeared to play a more significant contribution to the phase contrast of the images of collagen fibrils. The overlap region yielded a greater phase contrast than the more elastic gap zones. In summary, our results contribute to the perspective that, at different length scales, dentin is constituted of structural features that retain heterogeneous mechanical properties contributing to overall mechanical performance of the tissue. Furthermore, the interpretation of phase contrast from images generated with AFM tapping mode appears to be an effective tool to gain an improved understanding of the structure and property relationship of biological tissues and biomaterials at the micro- and nano-scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.