Abstract

In this work, we investigate mechanical scanning probe lithography (SPL) of thick MoSe2 flakes. The conventional technique faces difficulties in processing the thick samples due to cantilever twisting that leads to the growth of a number of defects and artifacts that decrease spatial resolution. In course of this work, we proposed the approach of frictional-SPL based on small pressure force and many repetitions of lithographic patterns. This approach allows to avoid the formation of remarkable defects and maintain high spatial resolution. By frictional-SPL, we processed thick MoSe2 flakes (up to 40 nm thick) with the highest resolution down to 20 nm. The results of this work show that frictional-SPL is an effective method of resistless lithography suitable for fabricating nanodevices based on transition metal dichalcogenides (TMDC) materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call