Abstract

A rapid mechanical ball milling method at room temperature has been proposed for Mn2+ doping. The mechanical force generated by the ball milling process was able to hammer Mn atom into the Bi3O4Br lattice in an efficient and stable manner. Doping with Mn2+ produces a doping level in the forbidden band. Also, Mn2+ promptly scavenged the photogenerated holes, reducing the recombination of photogenerated carriers and promoting the production of numerous active species. As a result, Mn2+ doped Bi3O4Br exhibited enhanced photodegradation performance towards antibiotic tetracycline, in which the optimal efficiency arrives 81.74%, 1.22 times higher than Bi3O4Br.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.