Abstract

Recently, mechanical ball milling (BM), a simple and green powder processing method, has been successfully applied to improve the performance of zero-valent metals (ZVMs) for efficient water treatment. However, until now BM is still regarded as a “black box” in which the processes of the solid-state reaction during activation remain unclear. In this paper, firstly, FeSO4·7H2O crystal was used to activate and modify inert microscale zero-valent aluminum (mZVAl) by BM to synthesize Al–Fe (oxide)bm composite that showed superior reactivity in reductive removal of various contaminants and excellent reusability, which may be mainly ascribed to the newly formed iron oxide layer on mZVAl by mechanochemical reaction. At the same time, the formation of iron oxides on mZVAl was closely related to BM parameters. Further kinematic analysis revealed that the occurrence of mechanochemical reaction depended on the impact energy and input energy, which BM speed and BM time were two main factors determining reaction extent on the premise that the precursors were full dose. Moreover, kinetic fitting uncovered the solid-state reaction mechanism between mZVAl and FeSO4·7H2O conformed to three-dimensional diffusion and phase boundary reaction models. This study ponders deeply upon the mechanochemical process and solid reaction mechanism during the preparation of Al–Fe (oxide)bm composite, which deepens comprehensions of material synthesis procedures by BM and promotes applications of ZVM-based composite in polluted water or wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call