Abstract
Cellular mechanosensing is pivotal for virtually all biological processes, and many molecular mechano-sensors and their way of function are being uncovered. In this work, we suggest that c-Src kinase acts as a direct mechano-sensor. c-Src is responsible for, among others, cell proliferation, and shows increased activity in stretched cells. In its native state, c-Src has little basal activity, because its kinase domain binds to an SH2 and SH3 domain. However, it is known that c-Src can bind to p130Cas, through which force can be transmitted to the membrane. Using molecular dynamics simulations, we show that force acting between the membrane-bound N-terminus of the SH3 domain and p130Cas induces partial SH3 unfolding, thereby impeding rebinding of the kinase domain onto SH2/SH3 and effectively enhancing kinase activity. Forces involved in this process are slightly lower or similar to the forces required to pull out c-Src from the membrane through the myristoyl linker, and key interactions involved in this anchoring are salt bridges between negative lipids and nearby basic residues in c-Src. Thus, c-Src appears to be a candidate for an intriguing mechanosensing mechanism of impaired kinase inhibition, which can be potentially tuned by membrane composition and other environmental factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.