Abstract
Hybrid composite materials have been widely used to advance the mechanical responses of fiber-reinforced composites by utilizing different types of fibers and fillers in a single polymeric matrix. This study incorporated three types of fibers: basalt woven fiber and steel (AISI304) wire meshes with densities of 100 and 200. These fibers were mixed with epoxy resin to generate plain composite laminates. Three fundamental mechanical tests (tensile, compression, and shear) were conducted according to the corresponding ASTM standards to characterize the steel wire mesh/basalt/epoxy FRP composites used as plain composite laminates. To investigate the flexural behavior of the hybrid laminates, various layer configurations and thickness ratios were examined using a design of experiments (DoE) matrix. Hybrid samples were chosen for flexural testing, and the same procedure was employed to develop a finite element (FE) model. Material properties from the initial mechanical testing procedure were integrated into plain and hybrid composite laminate simulations. The second FE model simulated the behavior of hybrid laminates under flexural loading; this was validated through experimental data. The results underwent statistical analysis, highlighting the optimal configuration of hybrid composite laminates in terms of flexural strength and modulus; we found an increase of up to 25% in comparison with the plain composites. This research provides insights into the potential improvements offered by hybrid composite laminates, generating numerical models for predicting various laminate configurations produced using hybrid steel wire mesh/basalt/epoxy FRP composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.