Abstract

Acrylic bone cement is significantly weaker and of lower modulus of elasticity than compact bone. It is also weaker in tension than in compression. This limits its use in orthopedics to areas where tensile stresses were minimum. Many authors have shown that addition of small percentages of fiber reinforcement by hand mixing improved the mechanical properties significantly but with variable results. In this investigation we have examined the mechanical properties of machine-mixed, commercially available carbon-fiber-reinforced bone cement. Appropriate samples of normal low-viscosity cement and carbon-fiber-reinforced cement were prepared and tested mechanically. Carbon fiber increased the tensile strength and modulus by 30% and 35.8% respectively. The compression strength and modulus, however, increased by only 10.7%. Similarly, bending and shear strengths improved by 29.5% and 18.5%, respectively. Diametral compression strength, which is an indirect measure of tensile strength, however, showed only 6.2% improvement. The maximum temperature rise during polymerization was also reduced significantly by the fiber reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.