Abstract

The mechanical properties of biocompatible microparticles including alginate microspheres and alginate-chitosan microcapsules with different wall thickness were determined using a micromanipulation technique. Single microparticles with diameters of 20-60 microm were compressed to a given deformation and held, and compressed to rupture at different speeds. The corresponding force imposed on them was measured simultaneously by a force transducer. Results showed that the force imposed on these particles increased when they were compressed, but relaxed significantly when they were held. For alginate microspheres, the faster the compression speed was, the greater the force being imposed on them at a given deformation. Alginate-chitosan microcapsules showed less force relaxation when they were held, compared with alginate microspheres. The thicker their wall was, the less significant force relaxation the microcapsules exhibited. The mean rupture force of alginate microspheres increased with the compression speed, but this effect in general became less for alginate-chitosan microcapsules, which depended on their wall thickness. However, the deformation at rupture for all three samples was independent of the compression speed. On average, the alginate-chitosan microcapsules were bigger than alginate microspheres and had a greater rupture force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.