Abstract

In this paper, analytical and numerical homogenization methods are proposed to effectively simulate the macroscopic characteristics of a pultruded composite lamina. A continuum damage model was implemented via user material subroutine to model fiber failure, while the Mohr-Coulomb plastic criterion is employed to model matrix damage. In order to simulate the damage of the fiber-matrix interface, the relationship between traction and displacement is established. The proposed theoretical and numerical models were verified by tensile, compressive, and shear test results. The outcomes of this study indicated that both theoretical, numerical prediction values agree well with experimental verification results confirming the validity of the proposed methodology in providing a reliable reference for structural design of pultruded fiber reinforced polymeric (FRP) composite structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.