Abstract

Technical information and data on the physical and mechanical properties of agricultural and animal products are necessary to design various equipments for agriculture and industry. In this study some physical properties such as mass, length, diameter, geometric mean diameter, surface area, sphericity, volume, coefficient of friction and packaging coefficient were determined for Japanese quail eggs. Furthermore, the mechanical behaviour of Japanese quail eggs was determined in terms of average rupture force, deformation and toughness (energy absorbed by the Japanese quail eggs per unit volume). Egg samples were compressed along their <i>X</i> and <i>Z</i>-axes. The average values of their mass, length, width, shell thickness, geometric mean diameter, surface area, sphericity, volume and packaging coefficient were measured to be 12.69 g, 34.87 mm, 26.20 mm, 0.27 mm, 28.82 mm, 2 608.5 mm<sup>2</sup>, 1.10, 359.17 mm<sup>3</sup>, 0.469, respectively. The values of the coefficient of friction for quail eggs on the surfaces of plywood, glass, galvanized steel and fibreglass were 0.301, 0.282, 0.274 and 0.266, respectively. The highest rupture force, deformation and toughness were obtained when Japanese quail eggs were loaded along their X-axis. Compression along the <i>Z</i>-axis required the least compressive force to break the eggs as compared to the other compression axes. Rupture force, deformation, absorbed energy and toughness for the <i>X</i>-front axis were determined to be 10.51 N, 1.5 mm, 7.88 Nmm and 0.219 Mj/mm<sup>2</sup>, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.