Abstract

This paper addresses the mechanical biaxial behavior of degraded arteries obtained by the rat xenograft model. For that, a pressure myograph was used to perform extension-inflation tests on abdominal aortic aneurysms (AAAs). Furthermore, residual stresses in the aneurismal wall were assessed by opening angle tests. Thus, the changes in mechanical behavior between native murine aortas, decellularized guinea pig aortas (the grafts) and degraded aortas (AAAs) were investigated. It was shown that decellularized and degraded aortas exhibited a different mechanical behavior than native murine aortas. Indeed, decellularized aortas presented a marked decrease in circumferential stretch and distensibility compared with native aortas. Moreover, we evidenced an exacerbation of these changes in mechanical behavior for AAAs, which showed the lowest distension and distensibility at 100mmHg. The opening angle test also revealed a complete loss of residual stresses in the degraded arterial wall given the non opening of rings extracted from AAAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call