Abstract

An overview of the mechanical behavior of steel pipe (elbows) is offered, based on previously reported analytical solutions, numerical results, and experimental data. The behavior of pipe bends is characterized by significant deformations and stresses, quite higher than the ones developed in straight pipes with the same cross section. Under bending loading (in-plane and out-of-plane), the main feature of the response is cross-sectional ovalization, which influences bending capacity and is affected by the level of internal pressure. Bends subjected to cyclic in-plane bending exhibit fatigue damage, leading to base metal cracking at the elbow flank. Using advanced finite-element tools, the response of pipe elbows in buried pipelines subjected to ground-induced actions is also addressed, with emphasis on soil–pipeline interaction. Finally, the efficiency of special-purpose finite elements for modeling pipes and elbows is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.