Abstract

Due to its compound cross-section, the prediction of the structural response of flexible pipes to loads such as their self-weight, internal and external pressure, movements imposed by the floating system and environmental loads such as currents, waves and wind is quite complex. All these loads generate stresses and strains in the cross section of the pipe that have to be properly evaluated in order to ensure integrity of the line. Research has been done on the local behavior of flexible pipes under combined axisymmetric loads as well as under bending loads. However, there is a lack of research combining both axisymmetric and bending loads, as also in the study of the strains in the tensile amour layers of the pipes, aspects which are important for the calibration of theoretical models to predict such behavior. Based on that, this study aims to evaluate the local behavior of flexible pipes under combinations of axisymmetric (tension, and internal pressure) and bending loads via a series of experimental tests in a 9.13″ I.D pipe. In the experimental tests, the behavior of the pipe was studied for three load combinations: i) bending combined with tension; ii) bending combined with internal pressure; and iii) bending combined with tension and internal pressure. Based on these tests, the authors obtained the strains in the tensile armor layer, axial elongation due to tension, axial reaction forces due to internal pressure, and deflection due to bending. These measurements were used to calibrate a theoretical model devoted to simulate the pipe’s response, getting accurate results for stiffness and stresses of the pipe in each scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call