Abstract

The rapid response to the COVID-19 pandemic has resulted in increased municipal waste in the form of used face masks (FMs), which pose a global threat to the environment. To mitigate this, the study explores the applicability of shredded FMs as alternative reinforcing material in sands. Laboratory-grade Ottawa sand and naturally collected sea sand are adopted as the base sands for testing. The primary physical properties of the base materials and the FMs are first examined, and the soil particles are imaged via scanning electron microscopy. Thirty consolidated undrained (CU) triaxial compression tests were conducted to evaluate the effects of the weight fraction of FM, FM length, and the initial effective mean stress on the undrained shear strength parameters of the sands. The experimental results proved that FM inclusion can lead to a substantial improvement in the undrained shear strength of the sands; however, such improvement was sensitive to the initial effective mean stress, with higher undrained shear strength gains associated with lower initial effective mean stress. For a given FM content, the critical state ratio and angle of friction at the critical state increased with the FM length. Finally, the results revealed that FM-reinforced sands exhibit dilative and strain-hardening behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call