Abstract

In this study, the mechanical behavior of fully grouted rock bolts in hydraulic tunnels subjected to elevated ground temperatures was investigated. A differential equation for axial displacement of the rock bolt was formulated, which considers the force equilibrium of infinitesimal bolt segments and the stress transfer mechanism at the anchor–rock interface. The distribution functions for axial stress within the bolt and the interfacial shear stress were obtained by solving the differential equation, which incorporated the displacement of the surrounding rock mass as a parameter. This study showed that the effectiveness of the bolt–shotcrete support system decreases over time, considering the displacement relaxation rate of the surrounding rock mass. The mechanical model’s variation laws at 20 °C, 50 °C, and 80 °C were summarized by integrating the thermal deformation equation for material parameters, and the numerical simulation results were compared and analyzed. The findings revealed that the bond strength between the rock bolt and the rock mass diminishes as the temperature of the surrounding rock increases, leading to a reduction of interfacial shear stress at both extremities of the bolt. Moreover, the maximum axial force within the bolt escalates as the neutral point migrates farther from the tunnel wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call