Abstract

This article investigates a novel precast connection, with U-shaped bars extending from precast column to connect with the longitudinal bars in precast beams. To improve the seismic behavior of the connection, engineered cementitious composites, one kind of highly ductile concrete, were introduced into the core area of the connection, which also act as the cast-in-place material in the beam top and end. Prior to the test, finite element modeling was conducted to determine the proper splice length between U-shaped bars and beam reinforcements and also to evaluate the bonding performance of the proposed connection. The experimental program was then carried out on a monolithic connection, a precast connection with normal concrete as well as a precast connection with engineered cementitious composite, after which the seismic behaviors of the connections including their failure mode, hysteresis characteristic, stiffness degradation, ductility, and energy dissipation were analyzed. All three types of connections underwent typical flexural failure where the joint area remained intact. The negative carrying capacity, ductility, and energy dissipation were slightly lower for the connection with concrete, while the connection with engineered cementitious composite exhibited satisfactory behavior comparable to monolithic specimens. The latter connection with engineered cementitious composite is therefore suggested to be applied in highly seismic region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.