Abstract
The deformation behavior of a bulk Cu 47Ti 33Zr 11Ni 6Sn 2Si 1 metallic glass, fabricated by injection casting, has been characterized in the supercooled liquid region. The alloy deforms homogeneously and exhibits large elongation above the glass transition temperature at constant true strain rate below 1×10 −2s −1, but it shows a variation of the flow stress during deformation. The flow stress reaches a peak just after yielding and then decreases significantly with increasing strain. After the plateau level of remarkably low flow stress, it rises again and then the alloy finally fails in a brittle manner. DSC data and TEM observations for the tested alloy reveal that the alloy evolves to being crystallized during deformation. Nano-crystals are aggregated and the aggregates are aligned along the load direction. When the volume fraction of the crystalline phase is in the range up to 0.5, the nano-crystal aggregates effectively slide over each other, lowering the apparent stress level. However, as the amount of the crystalline phase further increases, the flow stress continuously increases. This behavior can be explained based on the volume-fraction rule between the crystalline phase and the amorphous phase.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have