Abstract

A complete and systematic nanoindentation study was conducted on a mullite (3Al2O3·2SiO2) coating ∼1μm thick, deposited by means of chemical vapor deposition on a silicon carbide (SiC) substrate. The investigation included using different indenter tip geometries (Berkovich, spherical and cube-corner), complemented with atomic force microscopy and three-dimensional focused ion beam tomography to characterize the indentation response, deformation and damage micromechanisms. The intrinsic mechanical properties of the 3Al2O3·2SiO2 film and the interfacial toughness of the coated (3Al2O3·2SiO2/SiC) system were critically evaluated to assess the influence of substrate and film residual stresses. Through appropriate implementation of specific indenter tip geometry, different length-scale mechanical properties in the materials studied were successfully determined: yield strength and fracture toughness for the film, together with energy of adhesion per unit area and interface fracture toughness for the coated system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.