Abstract
AbstractMagnesium (Mg) alloy sheet has received increasing attention in automotive, transportation, and aerospace industries. It is widely recognized that magnesium sheet has a poor formability at room temperature. While at elevated temperature, its formability can be dramatically improved. To better understand the warm forming properties of magnesium alloy sheet, an accurate description of the mechanical behavior at elevated temperature is required.In this paper, both uniaxial tensile tests and uniaxial compression tests were carried out at warm temperature for Mg AZ31B alloy sheets. The tensile tests were conducted under various strain rates and material orientations, while the compression tests only considered different material orientations. Based on the orthotropic yield criterion for hexagonal close packed (HCP) metals proposed by Cazacu et al., 2006, a viscoplasticity model has been developed to describe the initial yield anisotropy and asymmetry hardening behavior in tensile and compression of Mg sheet. This model was incorporated into ABAQUS through a user-defined material subroutine. The numerical results show a good agreement with experimental data in a large range of deformation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have