Abstract

As one of the most important raw materials for fused deposition modeling (FDM) 3D printing, polyamide (PA) is widely used in many fields because of its excellent properties. For PA FDM, the parameters are highly important to the performance of the printed parts without doubt. Herein, the effect of two main printing parameters (nozzle temperature and layer thickness) on the mechanical properties and tribological properties of FDM-printed PA were investigated. Results show that the mechanical properties of PA increase yet the wear rate reduces with the increase of nozzle temperature from 240 °C to 260 °C, while the friction coefficient (COF) shows few variation. With the increase of layer thickness from 0.1 mm to 0.3 mm, the mechanical properties decline, while the COF increases. Surprisingly, polishing of the 3D printed PA increases the COF to the range of 0.40 to 0.60 from about 0.05 of unpolished, which is attributed to the disappearance of the smooth and hard surface layer caused by extrusion after polishing. For demonstrate, planetary gears were manufactured with the optimized parameters of nozzle temperature of 260 ℃ and layer thickness of 0.1 mm, found running stably at 200 rpm/min without any noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.