Abstract

Abstract Graphene/Inconel 718 composites were innovatively synthesized through selective laser melting, and the mechanical and tribological performances of the grapheme-reinforced Inconel 718 matrix composites were evaluated. The composite microstructures were characterized by XRD, SEM and Raman spectroscopy. The results show that selective laser melting is a viable method to fabricate Inconel 718 matrix composite and the addition of graphene nanoplatelets leads to a significant strengthening of Inconel 718 alloy, as well as the improvement of tribological performance. The yield strength and ultimate tensile strength of 1.0% graphene/Inconel 718 composites (mass fraction) are 42% and 53% higher than those of pure material, and the friction coefficient and wear rate are 22.4% and 66.8% lower than those of pure material. The decrease of fraction coefficient and wear rate is attributed to the improved hardness of composites and the formation of graphene nanoplatelet protective layer on the worn surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.