Abstract
In order to modify the properties of the epoxy composites, an alkali catalyzed biphenyldiol formaldehyde resin (BPFR) was synthesized and used to cure epoxy resin (ER). γ-Glycidoxypropyl trimethoxysilane (KH-560) was used as a reinforcer of the composites. Laminates of the BPFR/ER fiberglass reinforced composites with different (KH-560) contents were prepared. The influence of the KH-560 content on the glass transition temperature (Tg) and thermal degradation properties of the composites was researched by dynamic mechanical analyzer (DMA) and thermogravimetric analysis (TG). The mechanical, electrical properties of the composites were determined. The results showed that the interfacial bonding strength between resin matrix and fiberglass can be efficiently improved with the presence of KH-560. When the ratio of BPFR and ER is 3 : 7, the content of KH-560 is 5 ~7 wt%, the impact resistance of the fiberglass reinforced composites is 61.35~78.59 kJ/m2, the tensile resistance is 150.37~162.54 MPa, which are all 30 % higher than that of no added; The dielectric constant ε and dielectric loss tanδ of the composites is between 0.50~0.68 and between 0.008~0.01, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have