Abstract
The mechanical behavior of osteochondral defects was evaluated in this study with the intention of developing alternative procedures. Cylindrical pins (5.00 mm in diameter and in height) made of pHEMA hydrogel covered ultra-high molecular weight polyethylene (UHMWPE) or beta-tricalcium phosphate (beta-TCP) matrix were used. Ostoechondral defects were caused in the knees of adult dogs and the evaluation was carried out after a 9-month follow-up period. The mechanical behavior of the implants was evaluated by means of an indentation creep test that showed that the UHMWPE matrix maintained its viscoelastic behavior even after follow-up time, while the beta-TCP matrix osteochondral implants presented significant alterations. It is believed that the beta-TCP osteochondral implants were unable to withstand the load applied, causing an increase of complacency when compared to the UHMWPE osteochondral implants. Based on micro and macroscopic analysis, no significant wear was observed in either of the osteochondral implants when compared to the controls. However, morphological alterations, with fragmentation indices in the patella, were observed either due to friction with the hydrogel in the first postoperative months or due to forming of a dense conjunctive tissue. This wear mechanism caused on the counterface of the implant (patella) was observed, notwithstanding the osteochondral implant studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have