Abstract

Recycling of waste glass is an efficient way to protect the environment and save resources. This study evaluated the effective utilizations of glass sand (GS) to replace the quartz sand (QS) in typical ultra-high performance concrete (UHPC) and river sand (RS) in ultra-high performance river sand concrete (UHPRC). Ultra-high performance glass concretes (UHPGC) with different substitution ratios were prepared. The working performances and mechanical properties were evaluated, respectively. Meanwhile, the fracture characteristics of typical UHPC, UHPRC and UHPGC were characterized by acoustic emission (AE) parameters. Results show that the fluidities of typical UHPC and UHPRC are significantly enhanced by the addition of GS. The replacements of QS and RS by GS improve the compressive strengths of UHPC and UHPRC. When the replacement ratio of GS is 75%, the compressive strengths of typical UHPC and UHPRC both reach the maximum. The addition of GS presents no significant effects on flexural and splitting tensile strengths. Moreover, the fracture processes of UHPC, UHPRC and UHPGC under different loading conditions can be favorably characterized by AE amplitude and energy. The scanning electron microscope (SEM) tests of concrete mixes reveal the change trends of mechanical and fracture properties from the microcosmic point of view. The cleaner production of UHPGC realized the recycling of waste glass from landfill, which presents great potential for the future sustainable development of UHPC in bridge structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call