Abstract

This paper presents the experimental results of a study evaluating the mechanical and fatigue performance of welded Fe-Mn-Si SMA. For the experimental study, welded and welded-and-heat-treated Fe-Mn-Si SMA specimens were fabricated, and fatigue tests were performed at various stress amplitudes. In addition, direct tensile tests and recovery stress tests were also performed to evaluate the material properties of Fe-Mn-Si SMAs. The elastic modulus, yield strength, and tensile strength of the welded specimens were reduced by 35.4%, 12.1%, and 8.6%, respectively, compared to the values of the non-welded specimens. On the other hand, the elastic modulus, yield strength, and tensile strength of the welded-and-heat-treated Fe-Mn-Si SMA specimens were increased by 18.6%, 4.9%, and 1.3%, respectively, compared to the values of the welded specimens. Both welded and welded-and-heat-treated Fe-Mn-Si SMAs failed at lower cycles than the conventional Fe-Mn-Si SMAs at the same stress amplitude. High-cycle fatigue failure, characterized by cycles exceeding 104, typically occurs at relatively low stress levels within the elastic region, whereas low-cycle fatigue failure, generally occurring within cycles below 104, involves high stress levels that encompass both elastic and plastic deformation. Regardless of the welding condition, the stress amplitude at which Fe-Mn-Si SMA transitions from high-cycle to low-cycle failure exceeded the yield strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.