Abstract

Structural, mechanical, and electronic properties of Si–Ge alloys in P42/mnm structure were studied using first-principles calculations by Cambridge Serial Total Energy Package (CASTEP) plane-wave code. The calculations were performed with the local density approximation and generalized gradient approximation in the form of Perdew–Burke–Ernzerhof, PBEsol. The calculated excess mixing enthalpy is positive over the entire germanium composition range. The calculated formation enthalpy shows that the Si–Ge alloys are unstable at 0K; however, the alloys might exist at specified high temperature scale. The anisotropic calculations show that Si12 in P42/mnm structure exhibits the greatest anisotropy in Poisson’s ratio, shear modulus, Young’s modulus and the universal elastic anisotropy index AU, but Si8Ge4 has the smallest anisotropy. The electronic structure calculations reveal that Si12 and Si–Ge alloys in P42/mnm structure are indirect band gap semiconductors, but Ge12 in P42/mnm structure is a direct semiconductor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call