Abstract

Vagal afferents convey signals of mechanical stimulation in the gut to the brain, which is essential for the regulation of food intake. However, ion channels sensing mechanical stimuli are not fully understood. This study aimed to examine the ionic currents activated by mechanical stimulation and a possible neuro-modulatory role of nitric oxide on vagal afferents. Nodose neuronal currents and potentials, and intestinal afferent firing by mechanical stimulation were measured by whole-cell patch clamp, and in vitro afferent recording, respectively. Osmotically activated cation and two-pore domain K+ currents were identified in nodose neurons. The membrane potential displayed a biphasic change under hypotonic stimulation. Cation channel-mediated depolarization was followed by a hyperpolarization mediated by K+ channels. The latter was inhibited by l-methionine (TREK1 channel inhibitor) and l-NNA (nitric oxide synthase inhibitor). Correspondingly, mechanical stimulation activated opposing cation and TREK1 currents. NOS inhibition decreased TREK1 currents and potentiated jejunal afferent nerve firing induced by mechanical stimuli. This study suggested a novel activation mechanism of ion channels underlying adaptation under mechanical distension in vagal afferent neurons. The guts' ability to perceive mechanical stimuli is vital in determining how it responds to food intake. The mechanosensation through ion channels could initiate and control gut function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.