Abstract

The ability of nicotine to induce dependence (result in a withdrawal syndrome) is typically thought to require long-term, daily smoking. Emerging evidence suggests that symptoms of nicotine withdrawal may occur following only a few cigarettes. Whether acute exposure to nicotine can induce dependence in animals has not been well established. The objective of this paper is to examine whether the nicotinic acetylcholine receptor antagonist mecamylamine elicits withdrawal-like signs in rats following acute nicotine exposure. Mecamylamine (3.0 mg/kg, s.c.) administered ≈2 h after a single dose of nicotine (0.5 mg/kg, s.c.) elicited increases in intracranial self-stimulation (ICSS) thresholds and somatic signs, two well-established effects of withdrawal from long-term (chronic) nicotine exposure. The magnitude of these effects remained constant across five daily test sessions. A lower dose of mecamylamine (1.5 mg/kg, s.c.) had little or no effect on ICSS thresholds or somatic signs following acute nicotine exposure, but precipitated robust increases in these measures during a chronic nicotine infusion. Finally, rats exhibited a small increase in ICSS thresholds over time following a single nicotine injection (0.5 mg/kg, s.c.), possibly reflecting a modest spontaneous withdrawal-like effect. Mecamylamine elicited withdrawal-like signs in rats following a single dose of nicotine. The different effects of mecamylamine 1.5 mg/kg following acute versus chronic nicotine exposure supports the notion that these models simulate the early and more advanced stages of nicotine dependence, respectively. While further optimization and validation of these models is necessary, they may provide a novel approach for studying the earliest stages of nicotine dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.