Abstract

BackgroundEstablishing preclinical models of the development of nicotine withdrawal following acute nicotine exposure could inform tobacco addiction-related research, treatment, and policy. To this end, this lab has previously reported that rats exhibit withdrawal-like elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior) following acute nicotine exposure. The goal of this study was to provide further pharmacological characterization of ICSS as a measure of spontaneous and antagonist-precipitated withdrawal from acute nicotine. Methods and resultsRats exhibited a small increase in ICSS thresholds over time following a single nicotine injection (1.0 mg/kg, s.c.), suggesting a modest spontaneous withdrawal effect (Experiment 1). In Experiment 2, the antidepressant bupropion (5.0 mg/kg, i.p.), which is used to treat tobacco addiction and attenuates nicotine withdrawal in both humans and rodents, blocked elevations in ICSS thresholds induced by a single injection of nicotine (0.5 mg/kg, s.c.) followed ≈ 2 h later by the non-selective, non-competitive nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine (3.0 mg/kg, s.c.). In Experiment 3a, s.c. administration of the competitive, relatively selective α4ß2 nAChR antagonist dihydro-beta-erythroidine (DHßE) (5.6 mg/kg, but not 3.0 mg/kg) following each of 5 daily injections of nicotine (0.5 mg/kg, s.c.) elevated ICSS thresholds. Mecamylamine (3.0 mg/kg, s.c.) also elevated ICSS thresholds when administered following all 5 daily nicotine injections (0.5 mg/kg, s.c., Experiment 3b). ConclusionsThese findings provide further characterization of elevations in ICSS thresholds as a measure of withdrawal from acute nicotine exposure. Further use of these models may be useful for understanding the early development of nicotine withdrawal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.