Abstract

We present a comprehensive atmospheric retrieval study of the hot Jupiter WASP-77A b using eclipse observations from the Hubble Space Telescope (HST) and JWST. Using atmospheric retrievals, the spectral features of H2O, CO, and TiO are identified, with volume mixing ratios estimated at log10(VMR) = −4.40 −0.11+0.14 , −4.44 −0.28+0.34 , and −6.40 −0.23+0.22 , respectively. We derive the atmospheric C-to-O ratio—a key planetary formation tracer—to be C/O = 0.54 ± 0.12, which is consistent with both the stellar host value and previous studies of the planet’s atmosphere, suggesting a relatively close-in formation. Computing other elemental ratios (i.e., C/H, O/H, and Ti/H), we conclude that the general enrichment of the atmosphere (i.e., metallicity) is substellar, depleted in C and O, but that Ti appears slightly superstellar. A low C and O content could be obtained, in combination with a stellar C/O ratio if the planet formed outside of the CO2 snow line before migrating inwards. Meanwhile, a superstellar Ti/H could be obtained by late contamination from refractory rich planetesimals. While broadly in agreement with previous works, we do find some differences and discuss these while also highlighting the need for homogeneous analyses when comparative exoplanetology is conducted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call