Abstract

A novel ion transport membrane laboratory reactor is introduced which can sample gases at the La0.9Ca0.1FeO3−δ membrane surface at high temperature flux conditions. Experimental data (spatial profiles and operating condition sensitivity) is presented and used to validate detailed 1D and 2D numerical models under inert (CO2 sweep) operating conditions; the numerical models account for mass transfer resistances to the membrane surface. Bypassing the mass transfer resistances experimentally allows for direct parameterization of a three resistance oxygen flux model; a unique solution method based on bespoke experimental datasets to find surface exchange reaction rate constants is demonstrated. Membrane operating regimes and oxygen off-stoichiometric coefficients can thus be determined highlighting the importance of surface exchange studies and the obvious requirement to reduce sweep surface PO2 through oxyfuel reaction integration and/or flow field adjustments. A more complex first-order flux model is also proposed and tested incorporating the surface oxygen ion concentrations in the surface exchange reactions; this is found to give similar material parameters to the simpler zero-order model studied in the literature for this particular case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.