Abstract

Cohorts of emerald ash borer larvae, Agrilus planipennis Fairmaire, were experimentally established in July of 2008 on healthy green ash (Fraxinus pennsylvanica) trees in two wooded plots at each of three sites near Lansing, MI, by caging gravid emerald ash borer females or placing laboratory-reared eggs on trunks (0.5-2 m above the ground) of selected trees. One plot at each site was randomly chosen for release of two introduced larval parasitoids, Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae), whereas the other served as the control. Stage-specific mortality factors and rates were measured for all experimentally established cohorts and for associated wild (i.e., naturally occurring) emerald ash borer immature stages via destructive sampling of 2.5 m (above the ground) trunk sections of cohort-bearing trees in the spring and fall of 2009. Host tree defense was the most important mortality factor, causing 32.0 to 41.1% mortality in the experimental cohorts and 17.5 to 21.5% in wild emerald ash borer stages by spring 2009, and 16.1 to 29% for the remaining experimental cohorts, and 9.9 to 11.8% for wild immature emerald ash borer stages by fall 2009. Woodpecker predation was the second most important factor, inflicting no mortality in the experimental cohorts but causing 5.0 to 5.6% mortality to associated wild emerald ash borer stages by spring 2009 and 9.2 to 12.8% and 3.2 to 17.7%, respectively, for experimental cohorts and wild emerald ash borer stages by fall 2009. Mortality from disease in both the experimental and wild cohorts was low (<3%) in both the spring and fall sample periods. In the fall 2009 samples, ≈ 1.5% of experimental cohorts and 0.8% of the wild emerald ash borer stages were parasitized by T. planipennisi. While there were no significant differences in mortality rates because of parasitism between parasitoid-release and control plots, T. planipennisi was detected in each of the three release sites by the end of the study but was not detected in the experimental cohorts or associated wild larvae in any of the three control plots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.