Abstract
In this study, a home-built Rayleigh scattering based optical frequency domain reflectometry (OFDR) technique is used for the measurement of strain distribution in a loaded cement paste. The system offers a spatially-continuous strain measurement on an optical fiber with a spatial resolution of 1 cm, dynamic range of 1 km, measurement accuracy of ±2 microstrain, and an update rate of 10 Hz. The feasibility and performance of this technique for detection of uneven strain distribution are studied and evaluated. The distributed optical fiber sensors are embedded in a cement paste cantilever. A controlled deflection is applied at the free end of it, and the strain is measured. The results are compared with the values obtained from theoretical analysis using Euler-Bernoulli beam theory and a finite element simulation. The comparison shows a reasonable consistence in overall deformation, demonstrating that the proposed technique can be used for real time strain monitoring in cement based materials; while this technique can reflect the uneven distribution of local strains due to the material heterogeneity with a controllable, high spatial resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.