Abstract

The present study replicated and extended prior findings of suboptimal automation use in a signal detection task, benchmarking automation-aided performance to the predictions of several statistical models of collaborative decision making. Though automated decision aids can assist human operators to perform complex tasks, operators often use the aids suboptimally, achieving performance lower than statistically ideal. Participants performed a simulated security screening task requiring them to judge whether a target (a knife) was present or absent in a series of colored X-ray images of passenger baggage. They completed the task both with and without assistance from a 93%-reliable automated decision aid that provided a binary text diagnosis. A series of three experiments varied task characteristics including the timing of the aid's judgment relative to the raw stimuli, target certainty, and target prevalence. Automation-aided performance fell closest to the predictions of the most suboptimal model under consideration, one which assumes the participant defers to the aid's diagnosis with a probability of 50%. Performance was similar across experiments. Results suggest that human operators' performance when undertaking a naturalistic search task falls far short of optimal and far lower than prior findings using an abstract signal detection task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.